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Abstract
Introduction Repeated short-term hypoxia (interval hypoxia)
has been suggested to increase exercise tolerance by
enhancing stress resistance and/or improving oxygen delivery.
As low exercise tolerance contributes to mortality in patients
with coronary artery disease (CAD) and chronic obstructive
pulmonary disease (COPD), interval hypoxia might be a
valuable preventive and therapeutic tool for these patients.
Yet, mechanisms responsible for the improvement of exercise
tolerance are still largely unknown. Therefore, this review
intends to present an overview for better understanding of
such mechanisms and to stimulate further research work on
this important topic.
Data source Articles were selected from a search of the
PubMed database up to 2009 using the search terms
hypoxia, intermittent, interval in various combinations with
exercise, capacity, tolerance, CAD, COPD, and various
haematological and cardio-respiratory parameters.
Results Generally, the effects of 2–4 weeks of interval
hypoxia on exercise tolerance are contrasting. Whereas
aerobic exercise performance improved or remained un-
changed, anaerobic performance tended even to worsen.

Benefits on exercise tolerance seem to be greater in patients
with CAD or COPD when compared to healthy subjects.
Discussion The mechanisms responsible for these benefits
are the increases in total haemoglobin mass, lung diffusion
capacity, more efficient ventilation, and a decrease in the
responsiveness of the adrenergic system to stimulation and/
or an increase in parasympathetic activity. If confirmed in
further studies, interval hypoxia might become an attractive
strategy to complement the known beneficial effects of
exercise training, especially in patients with CAD or
COPD.

Keywords Coronary artery disease . Chronic obstructive
pulmonary disease . Interval hypoxia . Exercise tolerance

Introduction

Intermittent hypoxia is generally defined as repeated
episodes of hypoxia interspersed with normoxic periods
[1]. Unfortunately, the current term “intermittent hypoxia”
is mainly associated with obstructive sleep apnoea (OSA)
and the related adverse effects [1-3]. Experimentally
repeated short-term hypoxia (approximately 5 min) with
normoxic intervals, also known as interval hypoxic training,
has been clinically used by Russian physicians for many years
[4, 5]. The main rationale for the clinical use of this type of
hypoxia was based on the potential cross-protective value of
adaptations to one stress, which then may provide resistance
to another stress [6]. Therefore, we propose the use of the
term interval hypoxia (IH) instead of intermittent hypoxia
when applied to improvement of performance, preventive, or
therapeutic benefits.

As in the case of acclimatisation to chronic hypoxia, IH
is characterised by a progressive increase in ventilation,
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adaptations of the haematopoietic, neurohumoural, and
cardio-circulatory systems to enhance oxygen delivery to
the tissues, and by alterations on the tissue level to optimise
oxygen utilisation [7-10]. Both enhanced stress resistance
and improved oxygen delivery are basic preconditions for
increased exercise tolerance. Considering the evidence that
the improvement of exercise tolerance reduces mortality in
the elderly, in patients with coronary artery disease (CAD)
[11, 12], and also in patients with chronic obstructive
pulmonary disease (COPD) [13, 14], IH might be a suitable
tool for preventive and therapeutic purposes.

Yet the mechanisms responsible for the improvement of
exercise tolerance by IH are largely unknown. Therefore,
the objectives of this review are to outline some of these
potential mechanisms and to stimulate further research
work on this important topic.

Methods

Data source Articles were selected from a search of the
PubMed database up to 2009 using the search terms
“hypoxia, intermittent, and interval” in various combina-
tions with “exercise, capacity, tolerance, health, CAD,
COPD, erythropoiesis, cardiovascular, ventilation, skeletal
muscle, metabolic, and autonomic nervous system”. Addi-
tionally, some relevant book chapters and papers known to
the authors or cited in review articles have been included.
Studies on OSA as well as animal studies were largely
excluded from the analyses.

Results

The main characteristics and findings of the analysed
studies are presented in Table 1.

Maximal and submaximal exercise performance

After 2 to 4 weeks of IH, maximal and/or submaximal
aerobic exercise performance had increased [15-20] or
remained unchanged [21-23] in healthy subjects. Increased
exercise performance was associated with [15, 20] or
without [16, 17] haematological changes. Two investiga-
tions demonstrated that IH could improve running economy
[17, 22], whereas another found no such changes [24]. In
contrast, sprint performance has been shown to be
decreased [15, 25] or to remain unchanged [26]. Only two
experiments studied the effects of IH in patients with CAD
or COPD, demonstrating improvements in maximal and/or
submaximal aerobic exercise performance [20, 27]. In CAD
patients, these improvements were associated with increased

haemoglobin concentration [Hb], reduced cardiovascular
responses, and increased minute ventilation and arterial
oxygen saturation (SaO2) during submaximal exercise [20].
In COPD patients, however, improvements in aerobic
exercise performance were accompanied by enhanced total
haemoglobin mass (tHb) and lung diffusion capacity for
carbon monoxide (DLCO) [27], decreased ventilatory
equivalents for oxygen and carbon dioxide, and improved
SaO2 values at the anaerobic threshold [27].

Haematological parameters

Although none of the analysed studies demonstrated an
increase of tHb after IH in healthy subjects [17, 18, 21, 22,
28-30], it appears to be enhanced after IH in COPD patients
[27]. Some studies reported increased reticulocyte counts
and/or [Hb] after IH [15, 20, 28], whereas others did not
[17, 18, 21, 22, 29, 30]. Moreover, in patients with CAD,
IH decreased the levels of total cholesterol, low-density
lipoproteins, and triglycerides, and enhanced that of high-
density lipoproteins [31].

The autonomous nervous system and haemodynamics

It was a common observation that sympathetic activity,
heart rate, and systemic blood pressure increased during
exposures to hypoxia [9, 11, 32-36] or during recovery
from hypoxia [37, 38] and that the sensitivity of blood
pressure responses were increased to subsequent hypoxic
exposures [39]. Most of the analysed studies did not look at
sustained effects of IH on sympathetic activity and blood
pressure values at rest in normoxia. During submaximal
exercise after IH in normoxia, however, three studies
reported lowered heart rate and blood pressure values [17,
18, 20], whereas one study found increased exercising
blood pressure values in the group exposed to the most
severe hypoxia [19]. However, under similar IH conditions,
Fu et al. could not find any evidence for sustained
physiologically significant sympathoexcitation and abnor-
malities in blood pressure control in young athletes [40].
Cerebral blood flow to submaximal exercise was not altered
by IH [41]. In patients with severe coronary heart disease,
IH improved myocardial perfusion [42], and in patients
with COPD impaired baroreflex, sensitivity returned to
normal levels after IH [43].

Ventilation

Most of the studies evaluating the hypoxic ventilatory
response (HVR) have shown an increase in HVR after IH.
Six or more repeated exposures to relatively severe hypoxia
of ≥30 min stimulated HVR [28, 35, 44-49]. An increased
HVR could also be achieved by longer exposures to mild

Sleep Breath



T
ab

le
1

C
ha
ng

es
in

ha
em

at
ol
og

ic
al
,
au
to
no

m
ou

s,
ca
rd
io
va
sc
ul
ar
,
an
d
ve
nt
ila
to
ry

pa
ra
m
et
er
s
fo
llo

w
in
g
in
te
rv
al

hy
po

xi
a

A
ut
ho

r
N

H
yp

ox
ia

H
yp

ox
ia

pa
tte
rn

E
ff
ec
ts

A
in
sl
ie

et
al
.
(2
00

7)
[3
9]

14
S
aO

2
90
–7

5%
5

m
in

cy
cl
es

fo
r
1.
5

h/
da
y,

10
–1

2
da
ys

A
ft
er

12
da
ys

at
1,
56

0
m
:
↑
S
en
si
tiv

ity
of

B
P
an
d
m
id
dl
e
ce
re
br
al

ar
te
ry

bl
oo

d
fl
ow

ve
lo
ci
ty

to
hy

po
xi
a
w
ith

no
di
ff
er
en
ce
s
be
tw
ee
n
gr
ou

ps

E
le
va
tio

n
of

B
P
se
ns
iti
vi
ty

co
rr
el
at
es

w
ith

th
e
he
ig
ht
en
ed

pe
ak

ve
nt
ila
to
ry

re
sp
on

se

A
in
sl
ie

et
al
.
(2
00

3)
[5
0]

12
F
iO

2
13

.8
%

8–
9

h/
da
y,

5
da
ys

↑
H
V
R

↑
H
C
V
R
(s
lo
pe

+
in
te
rc
ep
t)

5
da
ys

af
te
r
ce
ss
at
io
n
of

IH
:
↔

H
V
R
+
H
C
V
R

B
ei
dl
em

an
et

al
.
(2
00

3)
[5
5]

6
A
lti
tu
de

4,
30

0
m

4
h/
da
y,

5
da
ys
/w
ee
k,

3
w
ee
ks

↑
A
dd

uc
to
r
po

lli
ci
s
m
us
cl
e
en
du

ra
nc
e

↔
ad
du

ct
or

po
lli
ci
s
M
V
C
fo
rc
e

B
er
na
rd
i
et

al
.
(2
00

1)
[9
]

12
+
6

P
E
T
O
2

35
–4

0
m
m
H
g

5–
7

m
in

cy
cl
es

fo
r
1

h/
da
y,

2
w
ee
ks

A
ft
er

IH
H
F
po

w
er

w
as

m
ai
nt
ai
ne
d
du

ri
ng

pr
og

re
ss
iv
e
hy

po
xi
a

H
+
C

↓
E
ff
ec
t
of

hy
po

xi
a
on

th
e
au
to
no

m
ic

ne
rv
ou

s
sy
st
em

B
ur
ts
ch
er

et
al
.
(2
00

9)
[2
7]

9
+
9

F
iO

2
15
–1

2%
5–
9
cy
cl
es
/d
ay

(3
–5

m
in

hy
po

xi
a:

3–
5

m
in

no
rm

ox
ia
),
15

da
ys

↑
T
ot
al

ex
er
ci
se

tim
e,

ex
er
ci
se

tim
e
to

th
e
an
ae
ro
bi
c
th
re
sh
ol
d

H
+
C

↑
S
aO

2
at

th
e
A
T

C
O
P
D

↓
V
E
/V
O
2
+
V
E
/V
C
O
2
at

th
e
A
T

A
t
w
or
kl
oa
d
1
an
d
1.
5

w
/k
g:

↓
L
a

↑
tH
B
,
D
L
C
O
,
F
E
V
1
,
F
E
V
1
/F
V
C
,
S
aO

2

↓
T
G

B
ur
ts
ch
er

et
al
.
(2
00

4)
[2
0]

8
+
8

F
iO

2
14
–1

0%
5–
9
cy
cl
es
/d
ay

(3
–5

m
in

hy
po

xi
a:

3–
5

m
in

no
rm

ox
ia
),
15

da
ys

↑
V
O
2
m
ax
,
V
E
m
ax

H
+
C

A
t
w
or
kl
oa
d
1

w
/k
g:

↓
H
R
,
S
B
P,

ra
te

pr
es
su
re

pr
od

uc
t;
↑
V
E
,
S
aO

2

C
H
D

an
d

he
al
th
y

↑
R
B
C
,
[H

b]

B
on

et
ti
et

al
.
(2
00

9)
[1
5]

9
+
9
+
9

S
aO

2
90
–7

6%
5
or

3
m
in

cy
cl
es

fo
r
60

m
in
/d
ay
,

5
da
ys
/w
ee
k,

3
w
ee
ks

H
gr
ou

p
co
m
bi
ne
d,

3
da
ys

af
te
r
in
te
rv
en
tio

n:
↑
P
p
ea
k
,
P
L
T
,
H
R
L
T

H
+
H
+
C

↓
M
ea
n
sp
ri
nt

po
w
er
,
fi
rs
t
sp
ri
nt

(%
pe
ak

po
w
er
)

H
gr
ou

p
co
m
bi
ne
d,

po
st
-t
re
at
m
en
t
da
y
0:

↓
fe
rr
iti
n,

↑
re
tic
ul
oc
yt
es

D
ay

14
:
↑
[H

b]
,
re
tic
ul
oc
yt
es

3
vs

5
m
in
:
↓
C
R
P,

↑
IL
-1
β
in

3
m
in

re
la
tiv

e
to

5
m
in

C
hi
u
et

al
.
(2
00

4)
[5
9]

8
+
8
+
8
+
8

F
iO

2
14

%
12

h/
da
y,

7
da
ys
/w
ee
k,

4
w
ee
ks

↔
M
us
cl
e
gl
yc
og

en
st
or
ag
e
an
d
G
L
U
T
4
pr
ot
ei
n
in

IH
-g
ro
up

C
+
E
T
+
H
+
H
E

↑
M
us
cl
e
gl
yc
og

en
le
ve
l
an
d
G
L
U
T
4
pr
ot
ei
n
in

IH
/T
-g
ro
up

C
ut
le
r
et

al
.
(2
00

4)
[3
7]

31
S
aO

2
~8

5%
E
ve
ry

1
m
in
,
30

s
hy

po
xi
a
fo
r

20
m
in

↑
M
S
N
A

du
ri
ng

re
co
ve
ry

fr
om

IH

IH
ap
no

ea
;
IH

hy
pe
rc
ap
ni
a,

IH
is
oc
ap
ni
c

F
os
te
r
et

al
.
(2
00

6)
[4
7]

17
F
iO

2
12

%
5

m
in

cy
cl
es

fo
r
1

h/
da
y
(H

1)
or

30
m
in
/d
ay

(H
2)
,
10

ex
po

su
re
s

↑
H
V
R

in
H
1
+
H
2,

no
di
ff
er
en
ce
s
be
tw
ee
n
gr
ou

ps

↔
su
bm

ax
.+
m
ax
.
V
E
in

H
1
+
H
2,

no
di
ff
er
en
ce
s
be
tw
ee
n
gr
ou

ps

F
os
te
r
et

al
.
(2
00

5)
[3
5]

18
F
iO

2
12

%
5

m
in

cy
cl
es

fo
r
1

h/
da
y
(H

1)
or

30
m
in
/d
ay

(H
2)
,
10

ex
po

su
re
s

↑
M
A
P
in

H
1,

↔
M
A
P
in

H
2

↑
H
V
R

in
H
1
+
H
2,

no
di
ff
er
en
ce
s
be
tw
ee
n
gr
ou

ps

↔
H
C
V
R
in

H
1
+
H
2

Sleep Breath



T
ab

le
1

(c
on

tin
ue
d)

A
ut
ho

r
N

H
yp

ox
ia

H
yp

ox
ia

pa
tte
rn

E
ff
ec
ts

3
+
5

da
ys

af
te
r
ce
ss
at
io
n
of

IH
:
↔

H
V
R
in

H
1
+
H
2

F
u
et

al
.
(2
00

7)
[4
0]

10
+
12

A
lti
tu
de

4,
00

0–
5,
50

0
m

3
h/
da
y,

5
da
ys
/w
ee
k,

4
w
ee
ks

↔
S
te
ad
y
st
at
e
ha
em

od
yn

am
ic
s,
ca
rd
io
va
sc
ul
ar

va
ri
ab
ili
ty
,
ca
rd
ia
c-
va
ga
l

ba
ro
re
fl
ex

fu
nc
tio

n.
N
o
ev
id
en
ce

fo
r
su
st
ai
ne
d
ph

ys
io
lo
gi
ca
l
si
gn

if
ic
an
t

sy
m
pa
th
oe
xc
ita
tio

n
in

yo
un

g
at
hl
et
es

H
+
C

G
ar
ci
a
et

al
.
(2
00

0)
[2
8]

9
F
iO

2
13

%
2

h/
da
y,

12
da
ys

↔
[H

b]
an
d
H
ct

↑
R
et
ic
ul
oc
yt
es

↑
H
V
R

on
ly

at
da
y
5
(l
ar
ge

in
te
ri
nd

iv
id
ua
l
di
ff
er
en
ce
s
in

tim
e
co
ur
se
)

↔
V
E
+
S
aO

2
in

no
rm

ox
ia

an
d
po

ik
ilo

ca
pn

ic
hy

po
xi
a

G
or
e
et

al
.
(2
00

6)
[3
0]

11
+
12

A
lti
tu
de

4,
00

0–
5,
50

0
m

3
h/
da
y,

5
da
ys
/w
ee
k,

4
w
ee
ks

↔
tH
b
an
d
R
C
V

H
+
C

G
or
e
et

al
.
(2
00

1)
[5
4]

6
+
7

A
lti
tu
de

3,
00

0
m

9.
5

h/
da
y,

23
da
ys

↑
S
ub

m
ax
.
V
E

H
+
C

H
ai
de
r
et

al
.
(2
00

9)
[4
3]

9
+
9

F
iO

2
12
–1

5%
5–

9
cy
cl
es
/d
ay

(3
–5

m
in

hy
po

xi
a:

3–
5

m
in

no
rm

ox
ia
),
15

da
y

↑
B
ar
or
ef
le
x
se
ns
iti
vi
ty

up
to

no
rm

al
le
ve
ls

H
+
C

↔
H
V
R

C
O
P
D

↑
H
C
V
R

T
en
de
nc
y:

↑
tid

al
vo

lu
m
e+

↓
re
sp
ir
at
or
y
ra
te

H
am

lin
et

al
.
(2
00

8)
[2
5]

9
+
6

F
iO

2
13
–1

0%
36

m
in
/d
ay
,
15

da
ys

↓
R
ep
et
iti
ve

ex
pl
os
iv
e
po

w
er

H
+
C

H
am

lin
et

al
.
(2
00

7)
[1
6]

12
+
10

F
iO

2
13
–1

0%
5

m
in

cy
cl
es

fo
r
90

m
in
/d
ay
,

5
da
ys
/w
ee
k,

3
w
ee
ks

↑
3,
00

0 T
T
2
an
d
17

da
ys

af
te
r
IH

H
+
C

H
in
ck
so
n
et

al
.
(2
00

7)
[2
6]

5
+
5

F
iO

2
10
–1

5%
36

m
in
/d
ay
,
14

da
ys

N
o
ef
fe
ct
s
on

sp
ee
d
en
du
ra
nc
e
in

le
g
pe
rf
or
m
an
ce

H
+
C

Ju
lia
n
et

al
.
(2
00

4)
[2
1]

7
+
7

F
iO

2
12
–1

0%
5

m
in

cy
cl
es

fo
r
70

m
in
/d
ay
,

5
da
ys
/w
ee
k,

4
w
ee
ks

N
o
di
ff
er
en
ce
s
be
tw
ee
n
gr
ou

ps

H
+
C

↔
3,
00

0 T
T
,
V
O
2
m
ax

↔
S
ub

m
ax
im

al
V
O
2
,
V
E
,
R
E
,
H
R

H
gr
ou

p:
[L
a]

↓
32

0
m
/m

in

N
o
di
ff
er
en
ce
s
be
tw
ee
n
gr
ou

ps
(E
P
O
,
[H

b]
,
H
ct
,
re
tic
ul
oc
yt
es
,
sT
fr
)

K
at
ay
am

a
et

al
.
(2
00

9)
[4
9]

6
+
6
+
7

F
iO

2
12

.3
%

1
h/
da
y
or

3
h/
da
y,

7
da
ys

↑
H
V
R
,
no

di
ff
er
en
ce

be
tw
ee
n
H

gr
ou

ps

H
+
H
+
C

↔
H
C
V
R

1
w
ee
k
af
te
r
ce
ss
at
io
n
of

IH
:
↑
H
V
R
,
no

di
ff
er
en
ce

be
tw
ee
n
H

gr
ou

ps

K
at
ay
am

a
et

al
.
(2
00

5)
[4
6]

7
+
7
+
8
+
7

F
iO

2
12

.3
%

3
h/
da
y,

7
or

14
da
ys

↔
H
C
V
R
in

7
da
ys

H
gr
ou

p

H
+
C
+
H
+
C

↑
H
C
V
R
(n
ot

in
te
rc
ep
t)
in

14
da
ys

H
gr
ou

p

1
w
ee
k
af
te
r
ce
ss
at
io
n
of

IH
:
↑
H
V
R
in

7
da
ys

H
gr
ou

p

2
w
ee
ks

af
te
r
ce
ss
at
io
n
of

IH
:
↔

H
V
R

in
bo

th
H

gr
ou

ps

K
at
ay
am

a
et

al
.
(2
00

4)
[1
7]

8
+
7

F
iO

2
12

.3
%

3
h/
da
y,

14
da
ys

↔
V
O
2
m
ax

H
+
C

↑
R
E
,
ru
nn

in
g
tim

e
to

ex
ha
us
tio

n,
↓
su
bm

ax
im

al
H
R
in

H
gr
ou

p

D
if
fe
re
nc
es

in
Δ
3,
00

0
m

tim
e
be
tw
ee
n
gr
ou

ps

Sleep Breath



T
ab

le
1

(c
on

tin
ue
d)

A
ut
ho

r
N

H
yp

ox
ia

H
yp

ox
ia

pa
tte
rn

E
ff
ec
ts

N
o
ha
em

at
ol
og

ic
al

ch
an
ge
s

K
at
ay
am

a
et

al
.
(2
00

1)
[3
6]

14
+
10

A
lti
tu
de

4,
50

0
m

1
h/
da
y,

7
da
ys

↑
Δ
S
B
P
/Δ

S
aO

2
an
d
Δ
D
B
P
/Δ

S
aO

2

H
+
C

K
at
ay
am

a
et

al
.
(2
00

1)
[4
5]

6
A
lti
tu
de

4,
50

0
m

1
h/
da
y,

7
da
ys

↑
H
V
R

↔
H
C
V
R

1
w
ee
k
af
te
r
ce
ss
at
io
n
of

IH
:
↑
H
V
R

K
at
ay
am

a
et

al
.
(1
99

8)
[4
4]

7
+
6

A
lti
tu
de

4,
50

0
m

1
h/
da
y,

6
da
ys

↑
H
V
R
on

ly
in

H

H
E
+
H

↔
H
C
V
R

1
w
ee
k
af
te
r
ce
ss
at
io
n
of

IH
:
↑
H
V
R

in
H

K
oe
hl
e
et

al
.
(2
00

7)
[4
8]

10
F
iO

2
12

%
12

cy
cl
es
/d
ay

(5
m
in

hy
po

xi
a:

5
m
in

no
rm

ox
ia
)
or

1
h/
da
y
7

da
ys

↑
H
V
R
in

bo
th

co
nd

iti
on

s,
pl
at
ea
u
af
te
r
th
e
th
ir
d
da
y,
no

di
ff
er
en
ce
s
be
tw
ee
n

gr
ou

ps

C
ro
ss
-o
ve
r

↓
C
O
2
th
re
sh
ol
d
in

hy
po

xi
a
an
d
hy

pe
ro
xi
a

↑
C
O
2
se
ns
iti
vi
ty

in
1

h
gr
ou

p,
no

di
ff
er
en
ce
s
be
tw
ee
n
gr
ou

ps

1
w
ee
k
af
te
r
ce
ss
at
io
n
of

IH
:
↔

H
V
R
+
C
O
2
th
re
sh
ol
d,

↑
C
O
2
se
ns
iti
vi
ty

in
1

h
gr
ou

p,
no

di
ff
er
en
ce
s
be
tw
ee
n
gr
ou

ps

L
un

db
y
et

al
.
(2
00

5)
[2
9]

8
A
lti
tu
de

4,
10

0
m

2
h/
da
y,

14
da
ys

↔
[H

b]
,
H
ct
,
re
tic
ul
oc
yt
es

L
us
in
a
et

al
.
(2
00

6)
[3
4]

11
F
iO

2
12

%
1

h/
da
y,

10
da
ys

↑
M
S
N
A

du
ri
ng

ac
ut
e
hy

po
xi
a
an
d
re
co
ve
ry

N
ey
a
et

al
.
(2
00

7)
[2
2]

10
+
9
+
6

A
lti
tu
de

3,
00

0
m

11
h/
da
y,

29
da
ys

↔
V
O
2
m
ax

an
d
tim

e
to

ex
ha
us
tio

n

H
+
H
E
+
C

↑
R
E

↔
tH
b

P
ae

et
al
.
(2
00

5)
[5
6]

4
+
4
+
4
+
4
+
4

F
iO

2
~1

0%
A
lte
rn
at
in
g
4

m
in

(I
H
)
an
d
4

m
in

(N
)
fo
r
5,

10
,
15

,
20

,
or

30
h

C
ha
ng

es
fr
om

M
H
C
T
yp

e
2A

to
M
H
C
T
yp

e
2B

in
G
H

ra
t
m
us
cl
e

H
+
H
+
H
+
H
+
H

S
im

ila
r
te
ns
io
n-
fr
eq
ue
nc
y
te
ns
io
n

↑
M
us
cl
e
fa
tig

ab
ili
ty

P
an
is
el
lo

et
al
.
(2
00

8)
[5
7]

17
+
16

+
6
+
19

A
lti
tu
de

5,
00

0
m

4
h/
da
y,

5
da
ys
/w
ee
k,

4
w
ee
ks

N
o
si
gn

if
ic
an
t
ch
an
ge
s
in

to
ta
l
m
us
cl
e
ca
pi
lla
ri
sa
tio

n
an
d
fi
br
e
m
or
ph

om
et
ry

of
TA

ra
t
m
us
cl
e

H
+
H
+
H
+
C

Q
ue
ri
do

et
al
.
(2
00

9)
[4
1]

9
S
aO

2
80

%
1

h/
da
y,

10
da
ys

↔
C
er
eb
ra
l
bl
oo

d
fl
ow

du
ri
ng

su
bm

ax
im

al
ex
er
ci
se

R
ic
ar
t
et

al
.
(2
00

0)
[5
3]

9
A
lti
tu
de

5,
00

0
m

2
h/
da
y,

14
da
ys

↔
R
es
tin

g
+
su
bm

ax
.
V
E
+
S
aO

2
in

no
rm

ox
ia

R
od

ri
gu

ez
et

al
.
(2
00

7)
[2
3]

11
+
12

A
lti
tu
de

4,
00

0–
5,
00

0
m

3
h/
da
y,

5
da
ys
/w
ee
k,

4
w
ee
ks

N
o
di
ff
er
en
ce
s
be
tw
ee
n
gr
ou

ps
fo
r
V
O
2
m
ax
,
V
E
m
ax
,
H
R
m
ax
,
V
O
2
at

V
T

H
+
C

R
od

w
ay

et
al
.
(2
00

7)
[3
3]

10
F
iO

2
13

.5
%

60
m
in
/d
ay
,
or

6
cy
cl
es

a
10

m
in
/d
ay
,
3

da
ys

↑
H
R
,
B
P
du

ri
ng

th
e
la
st
5

m
in

of
hy

po
xi
a
w
ith

no
di
ff
er
en
ce
s
be
tw
ee
n

gr
ou

ps

↔
N
O
S
2
m
R
N
A
.
D
B
P
co
rr
el
at
ed

ne
ga
tiv

el
y
w
ith

N
O
S
2
ex
pr
es
si
on

on
ly

in
IH

S
ha
til
o
et

al
.
(2
00

8)
[1
8]

14
+
21

F
iO

2
12

%
4
cy
cl
es
/d
ay

(5
m
in

hy
po

xi
a:

5
m
in

no
rm

ox
ia
),
10

da
ys

↑
P
p
ea
k
,
P
L
T
,
V
O
2
L
T

H
+
H

↓
H
R
,
B
P,

H
R
xB

P,
V
E
du

ri
ng

su
bm

ax
im

al
ex
er
ci
se

E
ld
er
ly

C
ha
ng

es
in

un
tr
ai
ne
d
on

ly

T
ra
in
ed

+
un

tr
ai
ne
d

N
o
ha
em

at
ol
og

ic
al

ch
an
ge
s

T
am

is
ie
r
et

al
.
(2
00

5)
[3
8]

10
S
aO

2
A
pp

ro
xi
m
at
el
y

85
%

2
h
or

30
–4
0

dr
op

s
in

S
aO

2
in

1
h

10
m
in

af
te
r
hy

po
xi
a:

↑
M
A
B
P,

F
B
F,

M
S
N
A

on
ly

in
th
e
C
H

gr
ou

p

H
ow

ev
er

no
di
ff
er
en
ce
s
be
tw
ee
n
gr
ou

ps

T
in
´k
ov

et
al
.
(2
00

2)
[3
1]

46
A
lti
tu
de

3,
50

0
m

3
h/
da
y,

22
da
ys

↓
T
C
,
L
D
L
,
V
L
D
L
,
T
G

Sleep Breath



T
ab

le
1

(c
on

tin
ue
d)

A
ut
ho

r
N

H
yp

ox
ia

H
yp

ox
ia

pa
tte
rn

E
ff
ec
ts

C
H
D

↑
H
D
L

N
o
in
fa
rc
tio

n
du

ri
ng

st
ud

y
an
d
fo
llo

w
-u
p
(6

m
on

th
s)

T
ow

ns
en
d
et

al
.
(2
00

2)
[5
1]

12
+
10

+
11

A
lti
tu
de

2,
65

0
m

8–
10

h/
da
y,

20
co
ns
ec
ut
iv
e
d
or

4
×

5
da
y
bl
oc
ks
,
in
te
rs
pe
rs
ed

by
tw
o

ni
gh

ts
in

no
rm

ox
ia

↑
H
V
R
in

bo
th

H
gr
ou

ps
,
m
or
e
pr
on

ou
nc
ed

in
co
ns
ec
ut
iv
e
H

gr
ou

p

H
+
H
+
C

↓
R
es
tin

g
P
et
C
O
2
in

bo
th

H
gr
ou

ps

↔
R
es
tin

g
V
E

2
da
ys

af
te
r
ce
ss
at
io
n
of

IH
:
↑
H
V
R
in

co
ns
ec
ut
iv
e
H

gr
ou

p,
↔

in
bl
oc
k
H

gr
ou

p

T
ow

ns
en
d
et

al
.
(2
00

5)
[5
2]

12
+
10

+
11

A
lti
tu
de

2,
65

0
m

8–
10

h/
da
y,

20
co
ns
ec
ut
iv
e
d
or

4
×

5
da
y
bl
oc
ks
,
in
te
rs
pe
rs
ed

by
tw
o

ni
gh

ts
in

no
rm

ox
ia

↑
H
V
R
in

bo
th

H
gr
ou

ps

H
+
H
+
C

↑
su
bm

ax
.
V
E
in

bo
th

H
gr
ou

ps
,
m
or
e
pr
on

ou
nc
ed

in
co
ns
ec
ut
iv
e
H

gr
ou

p

↔
m
ax
.
V
E

C
or
re
la
tio

n
fo
r
ch
an
ge
s
in

H
V
R

an
d
su
bm

ax
.
V
E
af
te
r
IH

T
ru
ije
ns

et
al
.
(2
00

8)
[2
4]

11
+
12

A
lti
tu
de

4,
00

0–
5,
00

0
m

3
h/
da
y,

5
da
ys
/w
ee
k,

4
w
ee
ks

↔
S
ub

m
ax
im

al
ec
on

om
y

H
+
C

V
al
le

et
al
.
(2
00

6)
[4
2]

6
A
lti
tu
de

4,
20

0
m

4
h,

14
se
ss
io
ns

↑
M
yo

ca
rd
ia
l
pe
rf
us
io
n

C
H
D

W
ad
hw

a
et

al
.
(2
00

8)
[3
2]

30
P
E
T
O
2

50
T
or
r

8
×
4

m
in

(5
m
in

no
rm

ox
ia
)

co
nt
in
uo

us
↑
S
ym

pa
th
ov

ag
al

ba
la
nc
e
(L
F
-t
o-
H
F
)

P
E
T
C
O
2

4
T
or
r

↓
P
ar
as
ym

pa
th
et
ic

ne
rv
ou

s
sy
st
em

ac
tiv

ity
(H

F
po

w
er
)

↑
N
or
m
al

In
m
en

on
ly

W
an
g
et

al
.
(2
00

7)
[1
9]

10
+
10

+
10

F
iO

2
12

%
1

h/
da
y,

5
da
ys
/w
ee
k,

4
w
ee
ks

↑
B
P
du

ri
ng

ex
er
ci
se
,
m
al
on

di
al
de
hy

de
,
no

H
+
H
+
C

15
%

↓
H
yp

er
ae
m
ic

ar
te
ri
al

re
sp
on

se
,
ve
no

us
co
m
pl
ia
nc
e,

en
do

th
el
iu
m
-d
ep
en
de
nt

va
so
di
la
tio

n,
pl
as
m
a
to
ta
l
an
tio

xi
da
nt

an
d
vi
ta
m
in

D
le
ve
l

21
%

E
ff
ec
ts
on

ly
in

12
%

F
iO

2
gr
ou

p

H
hy

po
xi
a
gr
ou

p,
H
E
hy

po
xi
c
ex
er
ci
se

gr
ou

p,
C
co
nt
ro
l
gr
ou

p,
E
T
en
du

ra
nc
e
tr
ai
ni
ng

gr
ou

p,
IH

in
te
rv
al
hy

po
xi
a,
Sa

O
2
ox

yg
en

sa
tu
ra
tio

n,
H
V
R
hy

po
xi
c
ve
nt
ila
to
ry

re
sp
on

se
,H

C
V
R
hy

pe
rc
ap
ni
c

ve
nt
ila
to
ry

re
sp
on

se
,
D
L
C
O

lu
ng

di
ff
us
io
n
ca
pa
ci
ty

fo
r
ca
rb
on

m
on

ox
id
e,

F
V
C

fo
rc
ed

ex
pi
ra
to
ry

vi
ta
l
ca
pa
ci
ty
,
F
E
V
1
fo
rc
ed

ex
pi
ra
to
ry

vo
lu
m
e
in

1
s,
V
O
2
m
a
x
m
ax
im

al
ox

yg
en

co
ns
um

pt
io
n,

V
E
m
a
x
m
ax
im

al
ve
nt
ila
tio

n,
H
R
he
ar
t
ra
te
,
V
E
/V
O
2
ve
nt
ila
to
ry

eq
ui
va
le
nt

fo
r
ox

yg
en
,
V
E
/V
C
O
2
ve
nt
ila
to
ry

eq
ui
va
le
nt

fo
r
ca
rb
on

di
ox

id
e,

L
a
bl
oo

d
la
ct
at
e,

A
T
an
ae
ro
bi
c
th
re
sh
ol
d,

L
T
la
ct
at
e

th
re
sh
ol
d,

P
po

w
er
,R

E
ru
nn

in
g
ec
on

om
y,
M
V
C
m
ax
im

al
vo

lu
nt
ar
y
co
nt
ra
ct
io
n,

SB
P
sy
st
ol
ic
bl
oo

d
pr
es
su
re
,D

B
P
di
as
to
lic

bl
oo

d
pr
es
su
re
,B

P
bl
oo

d
pr
es
su
re
,M

A
B
P
m
ea
n
ar
te
ri
al
bl
oo

d
pr
es
su
re
,

F
B
F
fo
re
ar
m

bl
oo

d
fl
ow

,
M
SN

A
m
us
cl
e
sy
m
pa
th
et
ic

ne
rv
e
ac
tiv

ity
,
H
F
hi
gh

fr
eq
ue
nc
y
co
m
po

ne
nt

of
he
ar
t
ra
te

in
te
rv
al
,
L
F
lo
w

fr
eq
ue
nc
y
co
m
po

ne
nt

of
he
ar
t
ra
te

in
te
rv
al
,
C
H
D

co
ro
na
ry

he
ar
t

di
se
as
e,

C
O
P
D

ch
ro
ni
c
ob

st
ru
ct
iv
e
pu

lm
on

ar
y
di
se
as
e,

T
C

to
ta
l
ch
ol
es
te
ro
l,
T
G

tr
ig
ly
ce
ri
de
s,

H
D
L
hi
gh

-d
en
si
ty

lip
op

ro
te
in
,
L
D
L
lo
w
-d
en
si
ty

lip
op

ro
te
in
,
V
L
D
L
ve
ry

lo
w
-d
en
si
ty

lip
op

ro
te
in
,

G
L
U
T
4
gl
uc
os
e
tr
an
sp
or
te
r
4,

IL
-1
β
in
te
rl
eu
ki
n-
1
be
ta
,
N
O
S
ni
tr
ic

ox
id
e
sy
nt
ha
se
,
sT
fr

so
lu
bl
e
tr
an
sf
er
ri
n
re
ce
pt
or

co
nc
en
tr
at
io
n,

C
R
P

C
-r
ea
ct
iv
e
pr
ot
ei
n,

R
C
V
re
d
ce
ll
vo

lu
m
e,

tH
b
to
ta
l

ha
em

og
lo
bi
n
m
as
s,
[H

b]
ha
em

og
lo
bi
n
co
nc
en
tr
at
io
n,

H
ct

ha
em

at
oc
ri
te
,
E
P
O

er
yt
hr
op

oi
et
in
,
M
H
C
m
yo

si
n
he
av
y
ch
ai
n,

G
H

ge
ni
oh

yo
id

m
us
cl
e,

TA
tib

ia
lis

an
te
ri
or

Sleep Breath



hypoxia [50-52]. In contrast, the paper by Haider et al.
reported no change in HVR in patients with mild COPD
after 3 weeks of IH [43]. The effects of IH on HVR seem to
disappear within a few days after finishing the IH [35, 46,
50]. Changes in carbon dioxide sensitivity might be
influenced only by longer-lasting exposures to hypoxia of
at least 3 h per day for 14 days [46] or 8 to 9 h for 5 days
[50]. In contrast to these findings in healthy people, patients
with COPD may have modified responses in chemo-
sensitivity to carbon dioxide [43]. The effects of IH on
exercise ventilation in normoxia are contrasting. Repeated
short exposures to hypoxia did not influence ventilation at
sea level in healthy and well-trained persons [28, 47, 53],
whereas repeated exposures of more than 8 h per day
increased ventilation during submaximal exercise in ath-
letes [52, 54]. Whereas the effects of IH on exercise
ventilation in older people with either cardiovascular
diseases or low fitness level are ambiguous [18, 20], in
patients with mild COPD, a reduction in submaximal
exercise ventilation has been observed after IH [27].

Skeletal muscle performance and metabolism

There are only a few reports examining the effects of IH on
neuromuscular activity or IH-triggered morphofunctional/
metabolic adaptations in skeletal muscle. While no changes
could be found in brief muscle contractions after an
intermittent altitude exposure [55], the results concerning
the IH effects on muscle fatigue are less definitive.
Improvement [55], no change [26], as well as decline [25]
in muscle endurance performance have been reported after
IH intervention, and similar contradictory findings were
also demonstrated at fibre morphometric level. Pae et al.
found IH-triggered muscle fibre conversion toward more
fatigable fast-twitch types [56], however, these morpho-
functional findings were not confirmed by others [57].
Similarly, no changes were observed in the skeletal muscle
for any of the examined biochemical indicators (lactate
dehydrogenase activity, citrate synthase, and myoglobin)
after a 4-week programme of short IH-exposure [58],
indicating that the aerobic and glycolytic anaerobic activity
is not affected by IH. In contrast, Chiu et al. showed in their
study that when comparing an ‘IH-only’ to the combination
of ‘exercise and IH’ intervention, the latter protocol resulted
in increased glucose transporters (GLUT4) protein expres-
sion and glycogen storage in skeletal muscle [59].

Discussion

The most important measure of exercise tolerance is the
sustainable relative work load, e.g., during walking,
cycling, running, and swimming. This work load usually

corresponds closely to the anaerobic threshold determined
by standardised exercise testing in the laboratory. Exercise
tolerance depends on the functioning of systems delivering
and utilising oxygen, i.e., cardiovascular and respiratory
systems and skeletal muscles. Thus, changes in respiratory,
cardiovascular and metabolic responses to the same relative
work load will also mirror changes in exercise tolerance.
Based on the concept of coordinated adaptation, a single
disturbance in one of these systems, e.g., in patients with
cardiovascular or respiratory diseases, triggers (mal)adapta-
tions in the others [60]. Exercise training will, for instance,
minimise such disturbances and increase exercise tolerance.
Additional adaptations can be assumed due to some
similarities between the stresses of exercise and hypoxia.

This review demonstrates contrasting effects of IH on
exercise tolerance. Anaerobic performance tends to worsen
after 2 to 4 weeks of IH, whereas aerobic exercise
performance seems to improve or remain unchanged.
Benefits on exercise tolerance seem to be greatest in
patients with CAD or COPD, and the mechanisms
responsible for these benefits are adaptations of the
haematological, autonomous nervous, cardio-respiratory,
and skeletal muscle systems.

Exercise tolerance and haematological parameters

In humans, the enhancement of the tHb increases the
oxygen carrying capacity of the blood and thus likely the
peak oxygen uptake (VO2 peak) and aerobic exercise
performance [61]. IH induced contrasting effects on
haematological parameters in subjects with different level
of performance and health conditions (Table 1). Hypoxia-
related haemoconcentration may have occurred in some
subjects and could, at least theoretically, have been
associated with reduced cardiac output during submaximal
exercise due to the enhanced oxygen content. Unfortunately,
only a few studies determined tHb the most meaningful
quantitative determinant of erythropoiesis. Studies on
athletes did not show any changes in tHb despite being
exposed to daily 3–11 h sessions of IH for over 4 weeks
[22, 30]. This becomes understandable because altitudes
above 2,100 m, hypoxic exposure of 3–4 weeks and with a
daily hypoxic exposure of at least 2,100 m and of not less
than 14 h/day seem to be necessary to increase tHb in
most athletes [62]. There is only one study showing a 4%
increase in tHB in COPD patients after 3 weeks of IH
[27]. These results are surprising with respect to the
aforementioned statement [62], but Gulyaeva and Tkatchouk
demonstrated that the erythropoietin response also
depends on the repetition of hypoxic exposures [63].
They found a marked erythropoietin response after the
fourth hypoxic session when applying a similar protocol to
ours with COPD patients. Nevertheless, the simplest
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explanation would be that those patients are different from
healthy individuals. For example, patients with COPD
could respond more sensitively to intermittent hypoxic
exposures than healthy subjects or athletes, as the
transcription factor complex hypoxia-inducible factor-1 is
up-regulated by hypoxia as well as by a broad variety of
inflammatory mediators due to COPD [64]. The increased
tHb after IH was positively related to VO2 peak in COPD
patients [27]. In our previous study with CAD patients, we
did not determine tHb, but there was an increased
haemoglobin concentration after IH without increased
VO2 peak, however, oxygen content (Hb×SaO2) was closely
related to VO2 peak [20]. Thus, the increased tHb and/or
greater arterial oxygen saturation (SaO2) could have contrib-
uted to the improvement in aerobic capacity of CAD patients
after IH. Besides increasing the oxygen carrying capacity, the
increase in tHb could also be effective by reducing oxidative
stress [65] and/or enhancing buffering capacity [66] with the
consequences of improved endothelial function and/or
reduced acidosis-related dyspnoea. The fact that haematoc-
rite levels did not change in our studies on CAD and
COPD patients, it may have helped avoid an increase in
blood viscosity and thrombotic risk. To sum up, IH
seems to provoke some haematological changes prefer-
entially in unhealthy subjects.

Exercise tolerance, the autonomous nervous system,
and haemodynamics

Acute hypoxia stimulates ventilation, sympathetic activity,
and parasympathetic withdrawal with the result of increases
in heart rate, cardiac output, and regional vasoconstriction
[67]. It is conceivable that these responses partly contribute
to the reduced exercise tolerance, when acutely exposed to
hypoxia, especially in patients with cardio-respiratory
diseases. Sympathetic excitation is caused by activation of
peripheral chemoreceptors by hypoxia per se and barorecep-
tors which are activated due to the hypoxia-related relaxation
of vascular smooth muscle in the systemic circulation and the
resulting hypotension [68]. Hypoxia induces pulmonary
arterial hypertension and increases cerebral blood flow and
coronary blood flow. With acclimatisation to hypoxia,
however, important adaptations may occur [69]. For exam-
ple, prolonged hypoxia tends to reduce resting and exercise
heart rate while circulating catecholamines remain elevated
[70]. These findings indicate either a decrease in the
responsiveness of the adrenergic system to stimulation or
an increase in parasympathetic activity [71]. The effects of
prolonged continuous or IH are complex and vary markedly
depending on the degree and the duration of hypoxia, age,
exercise, fitness level, and health condition. Only IH would
allow to dose hypoxic exposures individually as typically
done in exercise training. To date, IH protocols have not

been studied systematically, and the related results are partly
contradictory (cf. Table 1). Many studies investigating effects
of intermittent hypoxia in OSA demonstrated important
adverse effects like overactivity of the sympathetic nervous
system, oxidative stress, and endothelial dysfunction [1-3].
In contrast, IH could be designed to avoid these adverse
effects by the use of adequate IH protocols. Moreover, IH
may have the potential to provoke beneficial adaptations.
This assumption is supported by some studies demonstrating
reduced sympathetic activity and cardiovascular responses to
submaximal exercise after IH, thereby improving exercise
tolerance, e.g., in patients with CAD or COPD (cf. Table 1).
Unfortunately, only a very few studies considered such
patients [20, 27]. These were also the only studies designed
to explore potential preventive or therapeutic effects. Valle et
al. demonstrated increased myocardial perfusion after 14 days
of IH in patients with CAD [42]. Our study group found
increased exercise tolerance after 3 weeks of IH in CAD
patients. Reduced sympathetic activity and improved barore-
flex sensitivity have been reported after IH in COPD patients
[9, 43]. The diminished sympathetic activity may well have
contributed to the lower lactate formation [72] and the
resulting decrease in ventilatory requirements in COPD as
observed in our study [27]. Again, whereas only a few
changes have been demonstrated in athletes, IH may well
elicit some beneficial effects in unhealthy subjects.

Exercise tolerance and ventilation

Hyperventilation is the most rapid (seconds to minutes)
response to hypoxic exposure that partly compensates for
the decline in the inspiratory oxygen pressure. This
response is mediated by the peripheral chemoreceptors,
mainly the carotid bodies. During prolonged exposure to
hypoxia (hours to days), hyperventilation progressively
increases to reach a plateau which is typically associated
with hypocapnia. When returning to low altitudes, this
increased HVR persists for hours to days [73]. Most of the
studies using various protocols of IH also demonstrated an
increase of the HVR [28, 35, 44-52]. But a few days after
IH, the HVR diminishes at least in healthy subjects [35, 48,
50]. Theoretically, a more sensitive response to hypoxia
could reduce oxygen desaturation, the associated increase
in sympathetic tone and blood lactate accumulation during
exercise. That should contribute to improved exercise
tolerance in subjects susceptible to oxygen desaturation,
as it is the case in many patients with cardio-respiratory
diseases [74]. However, there are only few data available
showing that exercise ventilation is increased in normoxia
after IH and that this increase is related to the enhanced
HVR [51, 52]. Townsend et al. [52] demonstrated this
occurrence in athletes, and we also found indirect indica-
tions for it in CAD patients [20]. In these patients, the
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exercise ventilation and SaO2 values were higher after
3 weeks of IH and were associated with improved exercise
tolerance. In contrast, our study with COPD patients did not
show any changes in exercise ventilation after IH but
demonstrated increased SaO2 values during exercise which
were related to improved DLCO [27]. As we investigated
only male CAD patients and COPD patient of both sexes,
we cannot decide whether these differences are disease-
specific or gender-specific. Nevertheless, IH may change
chemosensitivity especially to hypoxia and DLCO in
patients with CAD or COPD and thereby diminish oxygen
desaturation during exercise and contribute to improved
exercise tolerance. The questions remain, for how long
these effects persist and whether the accompanying exercise
training could stabilise them.

Exercise tolerance and adaptations on the muscular level

Skeletal muscle possesses impressive phenotype plasticity
which can be easily demonstrated by strength and endur-
ance training or physical inactivity. Such adaptations are
directed at insuring functional integrity of the excitation and
contraction processes and providing adequate energy
supply [75]. Of course, hypoxia may challenge the energy
metabolism in the exercising muscle and provoke several
adaptations, but much less important effects are expected
from IH at rest. Only limited evidence exists for any IH-
related changes in muscle structure, strength, or power [25,
26, 55-57]. Also, no alterations in adenosine triphosphate
(ATP), PCr, or IMP concentrations have been found in the
vastus lateralis muscle during acute exposure to an altitude
of approximately 4,300 m [75]. On the other hand,
however, glycolysis and lactate flux were enhanced
probably to offset any reduction in oxidative phosphoryla-
tion. This increased glytolytic flux may contribute to sustain
mitochondrial respiration by providing reducing equivalents
[76]. With acclimatisation to hypoxia, however, glycolysis is
reduced and appears to be accompanied by a tighter
metabolic control. Green et al. showed that free adenosine
diphosphate (ADP) was lower and the ATP-to-free ADP
ratio was increased after acclimatisation compared to acute
hypoxia [75].

During submaximal exercise in hypoxia, epinephrine
levels are increased and closely related to increased lactate
levels [77, 78]. With acclimatisation, beta receptors are
down-regulated, and glycolysis and blood lactate concen-
trations are reduced [70]. Similar effects are proposed to
occur with adaptation to IH at rest. One apparent
consequence would be diminished lactate concentrations
during exercise, as observed in CAD and COPD patients
[20, 27]. Exercise training following IH could then likely
support the persistence of the low lactate and related
ventilatory responses to exercise.

Additionally, similarities between exercise and hypoxia
are evident due to their common effects on the 5′-AMP-
activated kinase (AMPK) signalling [79]. Both hypoxia and
exercise activate the AMPK pathway thereby increasing
glucose transport in human skeletal muscle [79]. Therefore,
hypoxia may share some beneficial effects known to be
associated by regular exercise or may even facilitate
exercise effects, e.g., on muscle GLUT4 expression and
glycogen storage [59]. Due to the lack of meaningful
studies, there are only indirect indications of potential
beneficial effects of IH on muscle metabolism.

Limitations of the current studies and future directions

Most models of intermittent hypoxia have been developed
to mimic the pattern of hypoxaemia observed in patients
with OSA, mostly demonstrating adverse effects [80]. The
few IH studies are characterised by a large heterogeneity
concerning the state of health and fitness of participants, the
degree of hypoxia, and the hypoxia–normoxia cycling
pattern and the observed physiological and pathophysio-
logical effects. Additionally, some of these studies may be
underpowered due to the small sample size. Only a few of
the analysed studies investigated physiological responses
after IH in normoxia and a very few considered exercise
tolerance as a main outcome parameter [15-20, 27].
Nevertheless, some well-controlled studies confirmed
beneficial effects of IH on exercise tolerance, especially in
patients with CAD or COPD [20, 27]. However, future
research in this area will undoubtedly be useful. Systematic
research on IH and the development of adequate IH
protocols will help to avoid negative effects as known
from intermittent hypoxia in OSA, e.g., hypertension,
inflammation, and atherosclerosis [80]. Such research will
focus on the effects of various degrees of hypoxia
combined with different hypoxia–normoxia cycling pat-
terns, and the specificity of effects depending on age,
gender, and health or disease state. Specific human models
of IH should assess interactions between IH and exercise. A
better understanding of mechanism responsible for IH
effects under the various conditions may especially be
expected from a more close cooperation between cellular,
molecular, and applied clinical research and should hope-
fully provide new insight into basic mechanisms for
adaptive and maladaptive responses to IH.

Conclusion

Benefits of IH on exercise tolerance seem to be greatest in
patients, e.g., with CAD or COPD. Responses to submaximal
exercise after 3 weeks of IH in patients with COPD or CAD
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are characterised by diminished values of heart rate, systolic
blood pressure, blood lactate, and rate of perceived exertion,
and increases in arterial oxygen saturation and arterial oxygen
content. After IH, ventilation seems to be influenced in
patients with CAD, whereas DLCO is improved in those with
COPD. Due to the close relationship between arterial systemic
oxygen delivery and oxygen uptake, limb blood flow and
cardiac output will decline when arterial oxygen content rises
to the same level of oxygen uptake. The increase in tHb or
even slight haemoconcentration, the more efficient ventila-
tion, reduced vagal withdrawal, and decreased sensitivity of
beta-adrenoceptors may contribute to the observed favourable
changes after IH. Although mechanisms of some of the
presented responses to hypoxia remain speculative, the few
existing well-controlled studies indicate beneficial effects of
IH on exercise tolerance in patients with cardiovascular or
respiratory diseases. Repeated and well-dosed hypoxic expo-
sures seem to be capable to evoke beneficial adaptations,
e.g., of the haematological, the neurohumoural, the
antioxidant, and cardio-respiratory systems, resulting in
improved exercise tolerance. Yet, much more research
work has to be done to explain basic mechanisms and to
elucidate the optimal individual dosing of IH. IH may
well have the potential to become an attractive strategy to
complement the known beneficial effects of exercise training
in these patients.
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