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Ischemic preconditioning (IPC) is an adaptive phenomenon that occurs after one or more short periods of 
ischemia / reperfusion, and consists in increasing the tolerance of an organ or tissue to the damaging effect 
of a long period of ischemia / reperfusion. Although IPC was shown to have a protective effect in animal 
models or during operative interventions, the obvious difficulties involved in subjecting the heart to direct 
IPC restrict its potential clinical applications. In this perspective, the phenomenon of remote ischemic 
preconditioning (RIPC: ischemia/reperfusion cycles in the arm or leg) appears extremely encouraging. 
Intermittent hypoxic training (IHT, periodic exposure of an organism to hypoxic gas mixtures, or stay in the 
chamber or altitudes) also has powerful adaptogenic effect increasing the resistance to subsequent episodes 
of severe hypoxia / ischemia. This review discusses main mechanisms and clinical applications of RIPC in 
cardiology versus IHT technologies. Benefits and disadvantages of both methods are under consideration. 
Positive and negative effects of hypercapnia during the RIPC technology are also examined.  We wish to 
stimulate a comprehensive understanding of such a complex physiological phenomenon as intermittent 
hypoxia and ischemic preconditioning in order to prevent or reduce their harmful consequences, while 
maximize their potential utility as an effective therapeutic tools. 
Key words: remote ischemic preconditioning,  intermittent hypoxia training, hypoxic-hyperoxic training, 
cardiovascular diseases, adaptation to hypoxia, hypercapnia
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I. INTRODUCTION

Hypoxia is a fundamental stimulus that evokes 
both adaptive and maladaptive responses. 
Prabhakar & Semenza [1] define hypoxia as 
a reduction in O2 availability in one state or 
condition compared with another; as such, it is a 
highly relative term. Over the past two decades, 
the term “intermittent hypoxia” (IH) actively 
entered into scientific practice. IH refers to 
repeating periods of hypoxia (from seconds to 
several hours or even days) that are followed by 
similar periods of normoxia. 

A broad interpretation of this term led 
Greg Semenza to put a question: “What is 
“intermittent hypoxia”? Does it play pathogenic 
roles in disease states, such as sleep-disordered 

breathing, chronic pulmonary disease, cardio-
vascular disease, and cancer? Or, quite to 
the contrary, does exposure to intermittent 
hypoxia induce protective responses?” [2]. It is 
appropriate to mention here the ancient wisdom 
well expressed by Paracelsus in the XYIth 
century: “Sola dosis facit venenum” (Only the 
dose makes the poison). So, the mode of hypoxic 
influence (depth, duration, and intermittence) 
appeared to be critical for the determination of 
healing or harmful result. 

Great confusion in the concept of intermit-
tent hypoxia makes the fact that different 
authors identify it with completely different 
influences. These include such paradigms of 
hypoxia as preconditioning effects of brief 
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episodes of low-frequency IH; exercise training 
in hypoxic conditions; maladaptation to IH in 
patients with obstructive sleep apnoe (OSA) 
and many others [3]. Moreover, some authors 
identify the notion “hypoxic preconditioning” 
with “ischemic preconditioning” (IPC). Hypoxic 
preconditioning refers to the periodic exposure 
of organisms, systems, organs, tissues or cells 
to moderate hypoxia/ischemia that results in 
increased resistance to a subsequent episode of 
severe hypoxia/ischemia, thus putting an equal 
sign between hypoxia and ischemia [4-7]. 

Some authors use the term “hypoxic pre-
con ditioning” to refer to a single exposure 
of inhalation of hypoxic mixture or stay at 
barochamber. For example, Portnichenko et al [8] 
ha ve shown that single exposure of acute hypoxia 
(inhalation of 10% O2 during 3 hours) prevents 
the induction and activation of 5-lipoxygenase 
during ischemia and reperfusion of rat heart. In 
addition, in the papers associated with diving, 
the term “preconditioning” used to describe the 
procedure of hyperbaric oxygenation before 
deep sea diving [9]. Terms “pretreatment” and 
“preconditioning” also found in the literature 
as synonyms. Some authors identify the term 
“adaptation to intermittent hypoxia” (daily 
periodic exposures to hypoxia for two to four 
weeks) with “hypoxic preconditioning” [4-5, 10].  

In an attempt to clarify this issue, other 
authors propose different classifications of 
IH species. For example, Milano et al [11] 
describe three different models of hypoxia, 
each with its own specific effects on myocardial 
tolerance to ischemia: 1) chronic hypoxia (CH) 
- high altitude; chronic obstructive pulmonary 
and congenital heart disease; anemia; blood 
O2 carrying abnormalities; CO poisoning; 
chronically decreased tissue perfusion;  2) 
chronic hypoxia with aeration (CHA) - repetitive 
short-term reoxygenation episodes during 
hypoxia (studies whereby animals are housed 
in hypoxic or hypobaric chambers that are 
routinely opened to allow operations such as 
cleaning and animal feeding); 3) intermittent 
hypoxia (IH) - obstructive sleep apnea; sickle 

cell anemia, crises; asthma; live high train low; 
therapeutic intermittent exposure to normobaric 
or hypobaric hypoxia. Severe chronic hypoxia 
invariably leads to depressed myocardial 
tolerance to ischemia, but moderate chronic 
hypoxia may be considered as cardioprotective. 
Chronic hypoxia with aeration is almost always 
protective. By contrast with the IH pattern 
associated with obstructive sleep apnea, other 
forms of IH the authors consider as protective. 

Besides, depending of type of hypoxic 
exposure (high altitudes, barochamber, inha-
lation of gas mixtures, or breath holding and 
ischemia), the unfolding events are accompanied 
by hypocapnia and alkalosis or hypercapnia and 
acidosis. But the physiological consequences 
of elevated or reduced CO2 levels under 
intermittent hypoxic technologies are very 
poorly elucidated. All these facts suggest that 
the common terminology on the issue of IPC and 
adaptation to hypoxia has not yet taken shape. 

However, despite all the confusions and 
disagreements, all the authors believe that 
both intermittent hypoxic exposures in diffe-
rent modes and different types of ischemic 
preconditioning can be successfully used 
for the treatment and prevention of many 
diseases, particularly cardiovascular disorders. 
Mechanisms of protective actions of hypoxic 
and ischemic impacts have been investigated 
during last decades at different levels – from 
genomic to systemic. 

Methodological approaches to the imple-
mentation of the preconditioning are extremely 
broad. In recent years, researchers are paying 
great attention to searching for alternative to IPC 
approaches to increase the tolerance of organs 
and tissues to ischemia/reperfusion. Among 
these attempts, remote ischemic preconditioning 
(RIPC) is known as a more convenient model 
for clinical usage. RIPC is the application of a 
transient and brief ischemic stimulus to a distant 
site from the organ or tissue that is afterward 
exposed to injury ischemia, and has been found 
to reduce ischemia-reperfusion injury in vari-
ous animal models [12]. The standard protocols 
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normally used to deliver RIPC involve a number 
of short cycles (about 5 min) of inflation of a 
blood pressure (BP) cuff on the arm and/or leg 
to an inflation pressure of 200 mmHg followed 
by cuff deflation for a short period of time [13].

In present review we will try to compare the 
effects of RIPC with the effects of intermittent 
hypoxia training/treatment (namely IHT - pe-
riodic inhalation of hypoxic gas mixtures) in 
terms of the potential use of these two methods 
in cardiological practice. 

II. ISCHEMIC PRECONDITIONING

How ischemia may play ‘preconditioning’, 
that is “preparatory” action? Preconditioning 
is assumed as a natural adaptive process 
whereby a subthreshold stimulus can promote 
protection against a subsequent lethal stimulus. 
Preconditioning has been observed in multiple 
organisms and can occur in different organs and 
tissues [14, 15]. According to first definition 
[16], myocardial IPC is a phenomenon  when 
multiple, brief nonlethal ischemic episodes 
pre-condition the heart and reduce infarct 
size caused by a subsequent ischemic insult. 
Authors exposed anesthetized open-chest dogs 
to four periods of 5 minute coronary artery 
occlusions followed by a 5 minute period of 
reperfusion before the onset of a 40 minute 
sustained occlusion of the coronary artery. The 
control animals had no such period of IPC and 
had much larger infarct sizes compared with 
the dogs that did.  Since then, more than 1400 
reviews have been published starting with a 
review of Schott & Schaper [17] until today. 
Pre-, post-, and remote conditionings of the 
myocardium are well described as adaptive 
responses that provide therapeutic paradigms 
for cardioprotection [13]. 

IPC involves several factors that are usually 
divided into three groups: triggers, mediators, 
and effectors [18-20]. The signaling pathways 
are complex and not yet fully understood. Ac-
cording to different sources, signaling path-
ways of immediate cytoprotection activate the 

synthesis of vasodilators (NO) and opening of 
KATP channels in mitochondria for the reduction 
of oxidative processes. Induction of genes that 
follows the conduction of cell signaling to the 
nucleus intensifies these defense mechanisms 
due to the synthesis of powerful enzymes 
iNOS and COX-2, activates the mitochondrial 
biogenesis and regulates their function using 
KATP - and КСа channels. These mechanisms are 
target-oriented at the prevention of oxidative 
stress and apoptosis. 

Hypoxia-inducible factor HIF-1 activates 
multiple protective pathways in response to 
ischemia. Direct IPC of the heart was shown 
to be dependent upon functional interaction of 
HIF-1α with the circadian rhythm protein PER2 
[21]. However, most investigators consider that 
our understanding of the sequence of steps is 
still fragmented.

Brief episodes of ischemia result in the 
release of initiating factors such as adenosine, 
opiates and bradykinin which are all endoge-
nously released by ischemic cells [22, 23]. They 
acti vate G-protein coupled pathways, which 
car ries a protective signal to an end-effector 
[24]. Bradykinin is involved in the inflam matory 
res ponse by regulating the expression of adhe-
sion molecules and the infiltration of leucocytes 
into the tissues. Bradykinin in low doses at-
tenuates IR-induced leucocyte recruitment and 
microvascular dysfunction through B2 receptor 
complex-dependent nitric oxide production [25]. 

Ischemic preconditioning has been described not 
only for the myocardium [16] but also for the kidney 
[26], skeletal muscle [27],  brain [28], and liver [29].

Although IPC was shown to have a protective 
effect in animal models, the obvious difficulties in-
volved in subjecting the heart to direct IPC restrict 
its potential clinical applications. Both ischemic 
preconditioning and postconditioning require 
an invasive intervention applied directly to the 
myocardium in order to achieve cardioprotection 
and may therefore be impractical or even harmful, 
particularly in the setting of an acute myocardial 
infarction (AMI) [19]. In this perspective, the RIPC 
phenomenon appears extremely encouraging. 
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III. REMOTE ISCHEMIC 
PRECONDITIONING

It has been known long ago that brief coronary 
artery occlusion preconditioned the myocardium 
not only within but also outside its perfusion 
territory [30]. Applying this phenomenon to 
humans was possible after discovering that the 
RIPC effect is reproducible after inflating–deflating 
a cuff placed around the limbs. Thus, there is a non-
invasive method to trigger ischemia–reperfusion 
episodes in remote organs and muscles. 

Remote forms of ischemic pre- and post-
conditioning are started to be used in clinical 
studies, as the remote application reduces the 
risk of injuring the target tissue for which pro-
tection is pursued [31]. Limb transient ischemia 
is the preferred method of induction of remote 
conditioning with evidence supporting its safety. 
Clinically, RIPC stimulus is generally delivered 
by inflating the blood pressure cuff tied on the 
upper arm 20mm greater than the systolic blood 
pressure, rendering the forearm ischemic for 
5min, followed 5min reperfusion by deflating 
the cuff. This cycle is repeated for 3-4 con-
secutive periods to precondition the tissue and 
improve the survival.

Mechanisms
The mechanisms underlying RIPC cardio-
protection are similar to those described for 
classical ischemic preconditioning [32]. But the 
pathways that links remote organs, on which the 
preconditioning stimulus is applied, to the target 
organ or tissue remains mostly unclear. 

Potential mechanisms of RIPC are good de-
scribed in recent reviews [20, 33].  Authors con-
sider that despite the uncertainty in fundamental 
RIPC mechanisms, they can be divided into three 
main components: (1) humoral, (2) neural, and 
(3) systemic factors of cardioprotection. 

For today, actual identity of the humoral 
mediators remains unknown despite the fact that 
many applicants have been proposed for this 
role. More than ten years ago such RIPC me-
diators as adenosine, bradykinin, and calcitonin 

gene-related peptide was described that enter 
the bloodstream and activate their respective 
receptors in the myocardium [34-37]. Later on, 
the role of endocannabinoids was described [38]. 

Numerous studies unveiled an activation of 
opioid receptors as a regulatory mechanism in 
tissues that have been exposed to reperfusion 
ischemia injury, suggesting that endogenous 
opioids can confer both acute and chronic 
ischemic protection [39, 40]. NO, a known 
major adenosine-induced vasodilator, has also 
been associated with the protective effects of 
preconditioning [12, 41]. Apart from locally 
induced vasodilation, NO may trigger other 
signal pathways and induce hepatic heme oxy-
genase-1 (HO-1), a stress inducible protein with 
anti-inflammatory effects. 

Hydrogen sulfide (H2S), a metabolite gen-
erated by cells under ischemia, has similar 
properties with NO and thus could be another 
possible mediator of the RIPC stimulus [42]. 
Mitochondrial KATP channels are thought to be 
a plausible target of the RIPC [43, 44]. Other 
authors suggest other agents such as heat shock  
protein 70 (HSP 70), IL-6, IL-8, IL-10, nuclear 
factor kappa B (NFκB) and TNF-α [25, 45-47].

Neuronal factors.  Gill and coauthors [33] 
characterize these factors as substances that 
act locally at the remote ischemic territory via 
afferent neural pathways. The same adenosine 
or bradykinin acts not directly, but through the 
afferent nerve fibers, which then relay to efferent 
nerve fibers terminating on the myocardium to 
confer cardioprotection. Neurogenic role to car-
dioprotection via capsaicin, PKC-e, and KATP 
signaling was elucidated by Jones et al [48]. 

RIPC appears to offer two distinct phases of 
endothelial IRI protection, both of which are me-
diated from the autonomic nervous system [12]. 
The early, short phase is activated immediately 
after preconditioning and vanishes within 4 h, 
whereas the second, prolonged phase presents 
24 h after the preconditioning stimulus and lasts 
for at least 48 h [49, 50].

Under the systemic factors Gill et al [33] 
implies genes encoding proteins involved in 
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cytokine synthesis, leukocyte chemotaxis, adhe-
sion and migration, exocytosis, innate immunity, 
signaling pathways, and apoptosis.  Ten years 
before that Konstantinov et al. [51] have shown 
that RIPC suppressed pro-inflammatory gene 
transcription in human leukocytes, helping to 
confer the protective role of RIPC against isch-
emia/reperfusion. 

Mitogenactivated protein kinase pathways 
might also have a significant role in the precon-
ditioning-induced protection from ischemia [52-
55]. Thielmann et al. [55] conducted a random-
ized clinical trial in which patients who received 
a RIPC stimulus consisting of three cycles of 
short 5-min episodes of ischemia/reperfusion 
of the arm before coronary artery bypass graft 
surgery were found to have significantly reduced 
postoperative serum levels of cardiac troponin I, 
which is indicative of cardioprotection. 

Saxena et al [25] investigated the impact 
of RIPC on kinin receptor expression in neu-
trophils in patients undergoing coronary artery 
bypass grafting (CABG). Authors concluded 
that RIPC down-regulated the expression of 
both kinin B1 and B2 receptors which persisted 
for at least 24 h. However, whether this consis-
tent down-regulation translates into clinically 
measurable decrease in post-cardiopulmonary 
bypass inflammatory response or not is yet to 
be established. 

Kalakech [56] tested whether RIPC-induced 
cardioprotection requires HIF-1α upregulation 
to be effective. In the first study, wild-type 
mice and mice heterozygous for HIF-1α (gene 
encoding the HIF-1α protein) were subjected to 
RIPC immediately before myocardial infarction. 
Authors concluded that HIF-1α upregulation is 
unnecessary in acute RIPC. But another research 
in mice [57] has led to the opposite result: data 
indicated that HIF-1 is required for RIPC. Al-
brecht et al. [58] provided investigation on pa-
tients undergoing cardiopulmonary bypass and 
also demonstrated the involvement of HIF-1a in 
RIPC-induced cardioprotection. 

Connexin 43 (Cx43), an integral membrane 
protein which expression and phosphorylation 

after RIPC might have a protective role, is 
also involved in the list of possible molecular 
mechanisms [33]. These authors also mention 
extracellular vesicles as membrane-bound struc-
tures containing a high concentration of RNAs 
and proteins, as well as  microRNAs such as 
miR-144 and miR-1. Authors emphasize that 
further studies are needed to establish the direct 
cause and effect relationship of the various ac-
tive molecules involved in the cardioprotective 
effect of RIPC.

Thus, most experimental studies on RIPC 
cardioprotection described above are similar 
to classical myocardial IPC. They involve the 
activation of adenosine, opiates and bradykinin 
action which in turn  activate G-protein coupled 
pathways, synthesis of vasodilators (NO and 
H2S), opening of sarcolemmal and mitochondrial 
KATP channels, the mPTP, etc. The participation 
of free radicals and HIFs as trigger mechanisms 
to preconditioning, other agents such as HSP 70, 
interleukins, and TNF-α are also considered. But 
there is no evidence about pathways that links 
remote and target organs. 

Clinical applications of RIPC in cardiac surgery
In recent years, remote ischemic conditioning 
has become the most popular form of mechanical 
cardioprotection, because the procedure is 
noninvasive, predictable, precise, safe, and 
notably avoids manipulation of the coronary 
culprit lesion [59]. According to Bousselmi 
et al [20], the first clinical trial in humans 
was negative [60]. Later on Cheung et al. [61] 
randomized 37 children scheduled for surgical 
repair of congenital heart defects. Seventeen 
children were included in the RIPC group and 
received four five-minute cycles of ischemia/
reperfusion achieved by inflation–deflation 
of a cuff placed on the lower limb. Twenty 
children were included in the control group. 
The postoperative levels of troponin I and 
the postoperative inotropic requirement were 
significantly higher in the control group. 
It was the first study to demonstrate the 
cardioprotective effect of RIPC in humans. 

T.V. Serebrovska and V.B. Shatilo
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Meanwhile, regarding neonates undergoing 
cardiopulmonary bypass surgery some authors 
consider that RIPC does not provide myocardial, 
renal, or neuronal protection [62].

Takagi & Umemoto [63] conducted a 
meta-analysis, drawn from nine randomized 
controlled trials including 482 patients. The 
conclusions were that RIPC reduces postop-
erative myocardial injury, but is not associated 
with either a reduction in early postoperative 
mortality or with a reduction in the incidence of 
postoperative myocardial infarction. In another 
investigation [19] RIPC was performed after 
the induction of anesthesia but prior to surgery 
and occurred within 1 hour. Those patients ran-
domized to receive RIPC had a standard blood 
pressure cuff placed on the upper arm, inflated 
to 200 mmHg for 5 min and then deflated for 5 
min, a cycle which will be performed four times 
in total. For patients with systolic blood pres-
sures above 185 mmHg, the cuff was inflated to 
at least 15 mmHg above the patient’s systolic 
blood pressure. The sham RIPC protocol was 
also carried out in a control group. Authors 
stated that RIPC can improve clinical outcomes 
in higher-risk patients undergoing CABG and 
valve surgery. 

Hausenloy et al [19] also provided the ER-
ICCA trial - multicentre randomized double-
blinded controlled clinical trial- which recruited 
1,610 high-risk patients undergoing CABG 
and valve surgery using blood cardioplegia via 
27 tertiary centres over 2 years. The primary 
combined endpoint was cardiovascular death, 
non-fatal myocardial infarction, coronary re-
vascularization and stroke at 1 year. Secondary 
endpoints included peri-operative myocardial 
and acute kidney injury, intensive care unit and 
hospital stay, inotrope score, left ventricular 
ejection fraction, changes of quality of life and 
exercise tolerance. Patients were randomized to 
receive after induction of anesthesia either RIPC 
(4 cycles of 5 min inflation to 200 mmHg and 
5 min deflation of a blood pressure cuff placed 
on the upper arm) or sham RIPC (4 cycles of 
simulated inflations and deflations of the blood 

pressure cuff). The authors underline that the 
findings from the ERICCA trial have the poten-
tial to demonstrate that RIPC can improve clini-
cal outcomes in higher-risk patients undergoing 
CABG ± valve surgery. But the concrete results 
of this trial were not published yet.

Vasdekis [12] reviewed a total of 24 rando-
mized clinical trials evaluating the safety and 
efficacy of RIPC in different atherosclerotic 
diseases including abdominal aortic aneurysm, 
open heart surgery, percutaneous coronary 
intervention, and intracranial or extracranial 
atherosclerosis. The findings indicate that an 
optimal protocol for the induction of RIPC has 
not been established. 

Recent studies of Manchurov and coauthors 
[64] from Russia demonstrated that RIPC prior 
to primary percutaneous coronary intervention 
(PCI) significantly improves endothelial function 
in patients with acute myocardial infarction and 
this effect remains constant at least for a week.  
Forty eight patients with AMI were enrolled. 
RIPC (intermittent arm ischemia-reperfusion 
through four cycles of 5-min inflation and 5-min 
deflation of a blood-pressure cuff to 200 mm Hg) 
was performed prior to primary PCI. Authors 
suppose that the improvement of endothelial 
function may be one of the possible explanations 
of the effect of RIPC.

In another investigation [65], 60 patients 
undergoing CABG surgery were randomized 
to RIPC (n=30) or control (n=30). RIPC was 
performed preoperatively by inflating a blood 
pressure cuff on the upper arm to 200 mm Hg 
for 3×5 minutes, with 5 minutes reperfusion 
intervals. Maximal mitochondrial respiration 
was preserved throughout surgery after RIPC 
but significantly reduced after aortic cross-
clamping in control. Incidence of postoperative 
atrial fibrillation was lower after RIPC versus 
control. Myocardial expression of microRNAs 
miR-133a and miR-133b (important regulators 
of mitochondrial function) increased after 
aortic cross-clamping in both RIPC and control, 
whereas miR-1 was upregulated in control 
only. MiR-338-3p expression was higher 
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in RIPC versus control after aortic cross-
clamping. The authors conclude that RIPC 
preserves mitochondrial respiration and prevents 
upregulation of miR-1 in the right atrium during 
coronary artery bypass graft.

Pavione et al [66] evaluated in randomized 
controlled trial whether RIPC performed the 
day before surgery for congenital heart disease 
with cardiopulmonary bypass attenuates the 
postoperative inflammatory response and 
myocardial dysfunction. Authors concluded 
that late RIPC did not provide clinically 
relevant cardioprotection. As Yang et al [4] 
suggest, repetitive hypoxic preconditioning 
may provide long-lasting protection than single 
preconditioning against ischemia/reperfusion 
injury.

Some authors suggested the prospective 
possibility of using RIPC for the treatment of other 
diseases, such as type-2 diabetes [67], chronic 
kidney disease [68] or prevention of transfusion-
related acute lung injury [69]. But the evidence is 
virtually non-existent in these studies.

There are some attempts to use RIPC in sport 
practice. For example, Jean-St-Michel et al [70] 
indicate that RIPC improves maximal perfor-
mance in highly trained swimmers. This simple 
technique may be applicable to other sports and, 
more importantly, to other clinical syndromes 
in which exercise tolerance is limited by tissue 
hypoxemia or ischemia.  Another authors have 
also been looked at RIPC as a means of improv-
ing performance in highly trained athletes [71-
73]. Barbosa [74] testify that RIPC applied to the 
lower limbs delayed the development of fatigue 
during handgrip exercise, prolonged time to task 
failure, but was not accompanied by changes 
in forearm hemodynamics and deoxygenation. 

In children, RIPC has also been applied in 
the lower limb by using a cuff inflation pressure 
that was 15 mm of Hg above the resting systolic 
pressure  [75].

Recent study [76] demonstrates that RIPC 
(four cycles of lower limb ischemia (5 min) 
and 5 min of reperfusion) transiently reduces 
symptoms of acute mountain sickness. However, 

Lalonde [77] investigating the effect of the 
same RIPC regimen on anaerobic performance 
in healthy participants, concluded that remote 
ischemic preconditioning does not offer any 
significant benefits for anaerobic performance. 
Accoding to Twine et al [78], the largest powe-
red ran domised trial in cardiac surgery showed 
no benefit to RIPC, meta-analyses are generally 
underpowered. The technique is physiologically 
sound but remains lacking in clear clinical 
benefit. Vasdekis et al [12] also conclude that 
most of the trials focused on postoperative 
cardiac or renal function after RIPC with 
conflicting results. However, no severe local 
adverse events were observed in any patient 
undergoing limb or arm preconditioning.

So, for today RIPC is used mainly for 
short-term cardioprotection in cardiac surgery 
to reduce postoperative myocardial injury after 
CABG and valve surgery, percutaneous coro nary 
inter vention, abdominal aortic aneurysm as well 
as in children scheduled for surgical repair of 
congenital heart defects. Several attempts have 
been made to show the potential effectiveness 
in sports as well as for the treatment of other 
diseases such as type-2 diabetes, chronic kidney 
disease, acute mountain sickness. 

IY. Intermittent hypoxia treatment  
in cardiology
Intermittent hypoxia training (IHT, periodic 
expo sure of an organism to hypoxic gas mixtu res, 
or recurrent stay in a barochamber) has powerful 
adaptogenic effect. This drug-free method, which 
is almost without contraindications, has been 
routinely used by about 2 million patients in the 
last 30 years and revealed good and satisfactory 
results in 75 – 95% of cases [79, 80]. The number 
of publications indexed in PUBMED under the 
key-word “Intermittent Hypoxia” increased 
from 15 in 1983 to 335 in 2014 of total 2900. 
Several monographs have been published [81, 
82]. Beneficial results of IHT application were 
obtained for the treatment and prevention 
of bronchial asthma and chronic obstructive 
pulmonary disease, cardiological disorders, type 
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II diabetes as well as for preparation of patients 
to surgery. In many other areas of medicine, 
such as hematology, neurology, gastrointestinal 
diseases, professional diseases, post radiation 
disorders of immune system, male reproductive 
system this method is also successfully used. 

Basic investigations led to the proliferation 
of various methods of IHT exposure and the 
development of different medical equipment – 
hypoxicators – for its implementation in sport 
practice and military operations and also for 
clinical application, including treatment of 
cardio-vascular disorders.

Many types of protocol with different num-
bers of hypoxia episodes, severity, and total 
exposure duration have been used by investiga-
tors and these combinations may have resulted 
in various physiological responses. In practice, 
normobaric hypoxic regimens vary broadly from 
3-12 short hypoxic sessions (2-10 min) with 
2-20 min normoxic breaks during 7-30 days to 
hypoxic influences lasting from 1 - 12 hours 
during 2-90 days [83]. As Navarrete-Opazo et al 
[84] describe, modest hypoxia (9-16% inspired 
O2) and low cycle numbers (3-15 episodes per 
day) most often lead to beneficial effects with-
out pathology, whereas severe hypoxia (2-8% 
inspired O2) and more episodes per day (48-
2,400 episodes/day) elicit progressively greater 
pathology. Serebrovskaya et al [83] investigating 
5 modes of IHT on gastrocnemius muscle PO2, 
heart and liver mitochondrial respiration in rats, 
concluded that the most effective IHT regimen 
is 5 min 12% O2 with 5 min breaks, five cycles 
per day during two or three weeks depending 
on the task of IHT. Accumulating evidence sug-
gests that “low dose” IHT (modest hypoxia, few 
episodes) may be a simple, safe, and effective 
treatment with considerable therapeutic poten-
tial for multiple clinical disorders. 

Intermittent hypobaric hypoxia is also used 
for treatment of patients with cardiovascular 
disorders [85-88]. But the use of barochambers 
are not entirely without risk. Besides, it is very 
expensive procedure. The disadvantages of 
hypobaric chambers have prompted increased 

study of normobaric hypoxia training, and in 
recent years normobaric breathing of hypoxic 
gas mixtures has become a practical means of 
producing IH.

In this review we will elucidate traditional 
IHT protocols elaborated mostly by scientists 
from Eastern Europe comprise alternating brief 
periods (minutes) of breathing with hypoxic gas 
mixtures followed by a subsequent oxygenation 
periods (breathing with ambient air or hyperoxic 
gas mixtures). 

Mechanisms
Numerous modern studies collectively show 
that IHT stimulates regenerative processes in 
an organism via several mechanisms:

(1) elicits upregulation of cytoglobins 
(myoglobin and neuroglobin), which constitute  
intracellular O2 buffer and provide protection 
against ROS and RNS [89, 90];

(2) stimulates insulin-independent glucose 
transport and accumulation of glycogen in the 
oxygen-sensitive cells (cardiomyocytes and 
neurons), thus increasing instantly available 
intracellular energy reserves [91, 92];

(3) incites activator protein-1 and HIFs, 
the master proteins responsible for numerous 
adaptational pathways [93, 94];

(4) stimulates erythropoietin (EPO) pro-
duction having multiple protective and neuro-
regenerative effects [95, 96];

(5) stimulates HSP70, one of the key 
members in the chaperons family providing 
protection against injury and facilitating 
successful recovery after damage [97, 98];

(6) incites growth hormone and insulin-like 
growth factor-1 (IGF-1) release [99, 100];

(7) enhances antioxidant defense system and 
increases the resistance of Na+-K+ ATPase to 
oxidative stress [101, 102];

(8) stimulates endothelial NO production 
provoking vasodilation, opening of reserve 
capillaries and preventing Ca2+ overload, which has 
multiple protective and adaptogenic effects [103];

(9) modulates humoral and cellular immunity 
[104];
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(10) stimulates brain-derived growth factor 
(BDGF) and glial cell-derived growth factor 
(GDNF) that provide neuronal protection and 
stimulate neuroregeneration [105];

(11) supports mitochondrial biogenesis and 
induces selection of non-mutated mtDNA [97];

(12) induces changes within mitochondria 
increasing the O2 utilization efficiency of ATP 
production [106];

(13) stimulates activity of natural mesenchi-
mal and hematopoietic stem-cells responsible 
for repair [104 , 107].

When exposed to IHT, the increase in the 
total number of mitochondria, the reduction of 
the number of structurally modified organelles, 
the appearance of energetically active mito-
chondria is observed [108]. Several protocols of 
therapeutic, non-damaging intermittent hypoxia, 
particularly IHT and intermittent hypoxic-hyper-
oxic training (IHHT) have been demonstrated to 
significantly increase proliferation, circulation 
and homing of bone-marrow derived mesenchi-
mal (stromal) stem cells [109, 110].

Use of IHT in cardiac clinic
Links to reviews devoted to IHT usage for 
the treatment of cardiovascular diseases, such 
as systemic hypertension, atherosclerosis, 
coronary heart disease, metabolic disturbances 
are available in many papers and monographs 
[81, 82, 85, 86, 111, 112]. Valuable studies have 
been conducted to prove beneficial effects of 
IHT for preoperative preparation of coronary 
artery bypasses grafting [113], patients with 
oncological problems [114] as well as pregnant 
women to planned abdominal delivery [115].

Special attention deserves the assessment 
of safety and efficacy of IHT implementation 
in elderly patients with stable angina, chronic 
coronary artery disease and hypertension. 
Besides, it was proved that IHT decreases 
functional age of cardiovascular system in 
elderly people with accelerated aging. The 
principles of individual dosing of hypoxic load 
for elderly patients were developed [116-118].

Collectively, effects of IHT on human 

cardiovascular system are described as the 
following: 1) improvement of metabolic 
processes in the myocardium; 2) enhancement 
of the myocardial ischemia/reperfusion sus-
tainability (anti-ischemic effect); 3) reduction 
of free radical damage; 4) improvement of 
endothelial function and microcirculation; 5) 
enhancement of inotropic cardiac function; 6) 
normalization of blood pressure; 7) reduced 
activity of the sympathetic nervous system; 8) 
reduced blood viscosity and platelet aggregation. 

A variety of technical implementations for 
IHT has been tested and used in recent decades, 
including hypobaric chambers, normobaric 
reduced oxygen rooms and mask-system hypo-
xicators, which produce hypoxic air in various 
ways. On the basis of hypoxicators classification, 
the overview of their design, medical and 
technical requirements is presented, and the 
perspectives of their development and industry 
trends are described as well as advantages and 
disadvantages of their operation [119].

In most cases gas mixture is formed from 
atmospheric air using deoxygenating method. 
Deoxygenation can be carried out by one of 
the following approaches: (1) gas separation 
on membranes or fibres [120]; 2) separation 
of oxygen and nitrogen by solid electrolytes 
[121]; 3) temporary binding of nitrogen by 
zeolites with further emission of nitrogen into 
the mixture [121]; and 4) breathing in semi-
closed flow circuit (rebreathing) [119]. Most 
of the currently manufactured hypoxicators use 
the methods of gas separation or rebreathing.

In practice, hypoxic regimens that are 
used for the study of hypoxic adaptations vary 
broadly from 3-12 short hypoxic sessions (2-10 
min) with 2-20 min normoxic breaks during 7-30 
days to hypoxic influences lasting from 1 - 12 
hours during 2-90 days [ 83].

The advantages of intermittent hypoxic-
hyperoxic training (IHHT) 

Recently, a new mode of adaptive training 
was explored, which combines periods of 
hypoxia and hyperoxia [122-125].  A novel 
principle of short-term periodic adaptive training 
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by varying the oxygen level from hypo- to 
hyperoxia is substantiated both theoretically and 
experimentally. Studies supports the viewpoint 
that moderate periodic generation of free radical 
signal during hypoxic/hyperoxic bouts causes 
better induction of antioxidant enzyme protein 
synthesis then hypoxic/normoxic exposures, 
that may be an important trigger for specific 
adaptations. 

This technology utilizes portable equipment, 
similar to the widely used oxygen concentrators, 
but specially designed for delivery of precisely 
controllable, intermittent flow of hyperoxic and 
hypoxic breathing mixture to the patient via 
facemask [126, 127]. Using this platform for 
clinical research opens new exciting perspec-
tives in fighting the multitude of cardiovascular, 
degenerative and age-related diseases [80].

Y. RIPC versus IHT: benefits  
and disadvantages
So, both RIPC and IHT technologies at defi-
ned doses provide positive effects on the 
cardiovascular system. These effects have 
mostly similar mechanisms of protection and 
share the same signaling pathways. At the same 
time, they differ in many ways.

RIPC are mainly used for patients undergoing 
heart surgery whereas IHT is mostly used in 
therapeutic clinics. RIPC technologies designed 
generally for one-day course (about 3-4 times 
for 5 minutes in 5-minute intervals). IHT 
involves training for 2 - 3 weeks. There is no 
reliable evidence about the duration of positive 
effects of RIPC technology, while researchers 
involved in IHT suggest 3 to 6 month period of 
improvements.

Besides the great differences in timeframe 
of the two methods, one very important pa-
rameter is evident: the presence or absence of 
hypercapnia. 

Indeed, the physiological and molecular 
consequences of elevated CO2 levels under 
RIPC technology are very poorly elucidated. 
Meanwhile, carbon dioxide is an important 
gaseous molecule that maintains homeostasis 

and is an important cellular signaling molecule 
in an organism. CO2 accumulates in the tissues 
during each episode of cuff inflating, which 
causes acidemia. On the contrary, during IHT, 
systemic hypoxia activates ventilation, resulting 
in hypocapnea and alkalemia.

Almost twenty years ago it was shown that 
the return from acidotic to normal pH after 
reperfusion caused myocytes to lose viability 
[128]. Recent analysis of physiological changes 
in the limb during ischemia demonstrated a re-
duction in sO2 (%), pO2 levels and pH as well 
as an increase in the levels of CO2 and lactate, 
but without any change in the base excess or  
HCO3

- levels at all cuff inflation pressures in 
the upper limb [129].

In the literature there are few papers concern-
ing the changes in gas exchange during remote 
preconditioning, although the role of CO2 and pH 
is not discussed. For example, Xia et al [130] in 
experiments on sheep showed that three episodes 
of five-minute occlusion and five-minute reper-
fusion of the iliac artery increased pulmonary 
vascular resistance and pulmonary arterial pres-
sure and decreased PaO2/ FiO2 ratio. Authors 
concluded that RIPC by transient occlusion of 
the iliac artery improves lung gas exchange. 
These data were later confirmed by studies of 
patients undergoing heart surgery [131]. The 
authors compared protective effect of remote 
ischemic preconditioning (RIPCpre) and post-
conditioning (RIPCpost) (three 10-min cycles of 
right-side lower-limb ischemia of 250 mm Hg) 
in patients undergoing complex valvular heart 
surgery. In both groups, the ratio between PaO2  
and FiO2 at 24 h postoperation was significantly 
decreased compared with each corresponding 
baseline value. Unfortunately, pCO2 and other 
parameters of acid-base balance have not been 
investigated.

In the whole body the higher CO2 level 
causes dyspnoea, headache, restlessness, faint-
ness, dulling of consciousness, greatly elevated 
alveolar ventilation, muscular rigidity and trem-
ors [132]. Systemic intermittent hypercapnia 
causes long-term ventilatory potentiation [133]. 

Remote Ischemic Preconditioning versus Intermittent Hypoxia Training



ISSN 0201-8489 Фізіол. журн., 2015, Т. 61, № 3 109

PaCO2 alterations may affect vascular dynam-
ics via activation or inactivation of vasoactive 
factors such as nitric oxide, angiotensin II, 
endothelin and bradykinin [134]. Hypercapnia 
is inversely correlated with renal blood flow 
and causes renal constriction. In kidney cells it 
rapidly stimulates renal H+ secretion [135]. In 
neuronal cells HCO3

- causes direct activation 
of a soluble adenylyl cyclase (sAC) protein 
which is targeted to intracellular compartments 
regulating cell metabolism [136]. Elevated CO2 
levels lead to the increase in cyclic AMP (cAMP) 
level which, in turn, activates PKA, that leads 
to opening of L-type Ca2+ channels and influx 
of Ca2+ into cells. Several reports confirmed a 
cell-damaging effect of severe acidosis [137, 
138]. There are other pathophysiological conse-
quences of elevated CO2 which could take place 
during cuff inflating. 

On the other hand, the hypercapnic acidosis 
may, paradoxically, be helpful in patients with 
organ failure due to ischemia/reperfusion-
related cellular injury. The mechanisms of such 
effects could be partly related to the suppression 
of formation of proinflammatory cytokines and 
reactive oxygen species in neutrophils, and 
with the increases in arterial blood oxygenation 
through improved ventilation-perfusion match-
ing at the lungs [133].

Moreover, some authors consider hypercap-
nia as a therapeutic remedy. Experiments on 
invertebrates have shown that moderate acidosis 
could result in adaptive responses for cell sur-
vival and increase tolerance to harmful stress. 
Acidic treatment significantly increased the gene 
expression of hypoxia inducible factor (HIF) 
[139]. According to Dunlop [140], inhalation of 
CO2 (“therapeutic hypercapnia”) may limit oxi-
dative stress and upregulate cytokine expression 
in the lung and other organs, prevent the adverse 
effects of sustained exposure to inhaled nitric 
oxide on right ventricular (RV) systolic function 
by limiting IL-1-mediated NOS-2 upregulation 
and consequent nitration. Authors consider that 
intermittent acidic preconditioning is more ef-
fective in preventing oxygen–deprivation injury, 

compared with prolonged act. The exogenous 
inhalation of CO2 has been also shown to have 
beneficial effects on the pulmonary circula-
tion and cardiac function [141-143]. It was 
even demonstrated that preconditioning with 
hypercapnic acidosis protects against ischemia-
induced cardiomyocytes injury [144, 145]. 

By analogy with the RIPS, studies of the 
IHT effects also paid little attention to the role 
of CO2, although vasoconstrictive action of 
hypocapnia secondary to hypoxic hyperventila-
tion takes place. Zhang et al [146] investigat-
ing experimental hypocapnia and hypercapnia 
following 14-day IHT (10% O2) concluded that 
repetitive normobaric IH exposures significantly 
diminish variations of cerebral perfusion in 
response to both hypercapnia and hypocapnia 
without compromising cerebral tissue oxygen-
ation. Similar results were obtained by Fan & 
Kayser [147]. Snow et al. [148] in experiments 
on rats have shown that hypocapnic but not 
eucapnic IH increases hematocrit and causes a 
more profound increase in right ventricular mass 
than does eucapnic IH. 

In general, the meager data on the role of 
hypocapnia in adaptive processes at IHT do not 
allow for any practical advice on manipulation 
with CO2 during IHT and to compare RIPC and 
IHT in terms of benefit or detrimental role of 
CO2  in clinical practice. Some  authors consider 
that hypercapnia treatment might be a novel 
strategy to prevent brain injury in surgically 
induced circulation arrest. Meanwhile, intracel-
lular acidosis due to hypercapnia raises concerns 
about potential harmful effects of intermittent 
hypercapnia. To the regret, this question has not 
been investigated according to dose-response 
curves both in RIPC and IHT technologies. 

Another approach to compare the two 
methods is their simplicity, convenience and 
cost in use. The biggest advantage of RIPC is 
the simplicity of application and low cost. The 
disadvantages concern both the methodology 
for conducting and the severity of the impact. 
Clamping arm cuff for 5 minutes with the pres-
sure about 200 mm Hg causes severe patient 
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discomfort, numbness of a limb and other ex-
tremely unpleasant sensations. There is limited 
data on how well the various RIPC protocols 
may be tolerated by nonanesthetized individuals. 
Sharma et al [129] investigated the perception of 
pain associated with RIPC using different cuff 
inflation pressures. In both the upper and lower 
limbs, there was a significant increase in the pain 
score from baseline with all three cuff inflation 
pressures used for RIPC (140, 160 and 180 mm 
Hg). RIPC was better tolerated in the upper limb 
compared with the lower limb at higher cuff 
inflation pressures. In this regard, IHT is associ-
ated with a more comfortable breathing through 
a mask, although provision of such procedures 
is more expensive.

Further, potential effects of age, race, drugs, 
and comorbidity on RIPC response have not 
been adequately investigated as well as optimal 
protocols have not been established. There is 
conflicting evidence regarding the effective-
ness of RIPC in patients undergoing different 
interventions. According to different authors, 
meta-analyses are generally underpowered; the 
RIPC technique is physiologically sound but 
remains lacking in clear clinical benefit.

IHT has a much larger history of develop-
ment than RIPC, and accumulates much more 
information about its use in wide areas of 
medicine other than cardiology. Most achieve-
ments in IHT practical implementation are 
based on a thorough study of the mechanisms 
of both positive and negative IHT actions. 
Various types of equipment that allows dos-
ing the degree of hypoxic stress depending on 
the purpose of training/treatment have been 
developed and introduced into clinical and 
sports practice. This equipment is comfort-
able to use, most devices are equipped with 
a feedback system to prevent the negative ef-
fects of hypoxic overdose. The benefit effects 
of IHT course last three to six months. There 
is evidence that some types of diseases can 
be completely cured with IHT.

The main negative aspect of IHT concerns 
first of all the lack of accurate development of 

methods for individual selection of hypoxic regi-
men for different patients with different groups 
of diseases. The proper choice of the hypoxic 
dosage must be titrated for each patient to avoid 
negative effects of hypoxia and to augment the 
favorable ones. Extensive multicentre trials for 
each type of disease have not conducted yet. 
Optimal protocols for the procedure need to be 
further determined. The equipment is mainly 
expensive and requires skilled personnel for its 
service. Cheap devices such as rebreathers are 
still not included in the common practice. 

We wish to stimulate a comprehensive 
understanding of such a complex physiologi-
cal phenomenon as intermittent hypoxia and 
ischemic preconditioning, in order to prevent 
or reduce their harmful consequences, while 
maximize their potential utility as an effective 
therapeutic tools. 
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ДИСТАНЦИОННОЕ ИШЕМИЧЕСКОЕ  
ПРЕКОНДИЦИОНИРОВАНИЕ   
И ИНТЕРВАЛЬНАЯ ГИПОКСИЯ  
В КАРДИОПРОТЕКЦИИ:  
СРАВНИТЕЛЬНЫЙ АНАЛИЗ 

Под ишемическим прекондиционированием понимают 
адаптивный феномен, возникающий после одного или 
нескольких коротких промежутков ишемии/ реперфузии 
и заключающийся в повышении устойчивости органа 
или ткани к повреждающему действию длительного 
периода ишемии/реперфузии. Хотя на животных 
моделях и в ходе хирургических операций доказано, 
что ишемическое прекондиционирование производит 
защитный эффект на сердечную мышцу, клиническое 
применение этого метода чрезвычайно затруднительно.  
С этой точки зрения, метод дистанционного ишеми-
ческого прекондиционирования (ДИП – перио ди-
ческое пережатие манжетой предплечья или но ги)  
представляется крайне обнадеживающим. Интер-
вальные гипоксические тренировки (ИГТ - периодиче-
ское воздействие на целый организм, орган или ткань 
гипоксическими газовыми смесями, либо пребывание в 
барокамере или высокогорье) также обладают мощным 
адаптогенным эффектом, повышающим устойчивость 
к последующим эпизодам тяжелой гипоксии / ише-
мии. В обзоре обсуждаются основные механизмы и 
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клиническое применение метода ДИП в кардиологии 
по сравнению с технологиями ИГТ. Рассматриваются 
преимущества и недостатки обоих методов, а также 
положительные и отрицательные эффекты гиперкапнии 
во время технологии ДИП. Мы хотим стимулировать 
всестороннее исследование такого сложного физиоло-
гического явления, как прерывистая гипоксия и ишемия 
для  предотвращения или уменьшения их отрицательных 
последствий  и максимизации их потенциальной полез-
ности в качестве эффективных терапевтических средств.
1 Институт физиологии им. А.А.Богомольца НАН 
Украины, Киев;
2  Государственное учреждение “Институт 
геронтологии им. Д.Ф. Чеботарева НАМН Украины”, 
Киев, Украина
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ДИСТАНЦІЙНЕ ІШЕМІЧНЕ  
ПРЕКОНДИЦІОНУВАННЯ  
І ИНТЕРВАЛЬНАЯ ГІПОКСІЯ  
В КАРДІОПРОТЕКЦІЇ: ПОРІВНЯЛЬНИЙ 
АНАЛІЗ

Під ішемічним прекондиціонуванням розуміють адап-
тивний феномен, що виникає після одного або декількох 
коротких проміжків ішемії / реперфузії і полягає в 
підвищенні стійкості органа або тканини до шкідливої 
дії тривалого їх періоду. Хоча на тваринних моделях 
і під час хірургічних операцій доведено, що ішемічне 
прекондиціонування спричиняє захисний ефект на 
серцевий м’яз, клінічне застосування цього методу 
надзвичайно складне. З цієї точки зору, метод дистанцій-
ного ішемічного прекондиціонування (ДІП - періодичне 
стискання манжетою передпліччя або ноги) є вкрай 
обнадійливим. Інтервальні гіпоксичні тренування (ІГТ - 
періодичний вплив на цілий організм, орган або тканину 
гіпоксичними газовими сумішами, або перебування 
в барокамері чи високогір’ї) також мають потужний 
адаптогенний ефект, підвищуючи стійкість до подальших 
епізодів важкої гіпоксії / ішемії. В огляді обговорюються 
основні механізми та клінічне застосування методу 
ДІП в кардіології в порівнянні з технологіями ІГТ. 
Розглядаються переваги та недоліки обох методів, а також 
позитивні і негативні ефекти гіперкапнії під час ДІП. 
Ми хочемо стимулювати всебічне дослідження такого 
складного фізіологічного явища, як інтервальна гіпоксія 
та ішемія для запобігання або зменшення їх негативних 
наслідків і максимізації потенційної корисності як 
ефективних терапевтичних засобів.
1 Інститут фізіології ім. О.О.Богомольця НАН України, 
sereb@biph.kiev.ua;
2 Державна установа “Інститут геронтології ім.  
Д.Ф. Чеботарьова НАМН України”, Київ.
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